Rust Interface#
See the BridgeStan Crate documentation on docs.rs
Installation#
The BridgeStan Rust client is available on crates.io and via cargo:
cargo add bridgestan
A copy of the BridgeStan C++ sources is needed to compile models. This can be downloaded to
~/.bridgestan/
automatically if you use the download-bridgestan-src
feature.
Otherwise, it can be downloaded manually (see Getting Started).
Note that the system pre-requisites from the Getting Started guide are still required and will not be automatically installed by this method.
Example Program#
An example program is provided alongside the Rust crate in examples/example.rs
:
Show example.rs
use bridgestan::{compile_model, open_library, BridgeStanError, Model};
use std::ffi::CString;
use std::path::{Path, PathBuf};
fn main() {
// Set up logging - optional
if std::env::var("RUST_LOG").is_err() {
std::env::set_var("RUST_LOG", "bridgestan=info");
}
env_logger::init();
// The path to the Stan model
let path = Path::new(env!["CARGO_MANIFEST_DIR"])
.parent()
.unwrap()
.join("test_models")
.join("simple")
.join("simple.stan");
// You can manually set the BridgeStan src path or
// automatically download it (but remember to
// enable the download-bridgestan-src feature first)
let bs_path: PathBuf = "..".into();
// let bs_path = bridgestan::download_bridgestan_src().unwrap();
// The path to the compiled model
let path = compile_model(&bs_path, &path, &[], &[]).expect("Could not compile Stan model.");
println!("Compiled model: {:?}", path);
let lib = open_library(path).expect("Could not load compiled Stan model.");
// The dataset as json
let data = r#"{"N": 7}"#;
let data = CString::new(data.to_string().into_bytes()).unwrap();
// The seed is used in case the model contains a transformed data section
// that uses rng functions.
let seed = 42;
let model = match Model::new(&lib, Some(data), seed) {
Ok(model) => model,
Err(BridgeStanError::ConstructFailed(msg)) => {
panic!("Model initialization failed. Error message from Stan was {msg}")
}
Err(e) => {
panic!("Unexpected error:\n{e}")
}
};
let n_dim = model.param_unc_num();
assert_eq!(n_dim, 7);
let point = vec![1f64; n_dim];
let mut gradient_out = vec![0f64; n_dim];
let logp = model
.log_density_gradient(&point[..], true, true, &mut gradient_out[..])
.expect("Stan failed to evaluate the logp function.");
println!("logp: {}\ngrad: {:?}", logp, gradient_out);
}
API Reference#
See docs.rs for the full API reference: https://docs.rs/bridgestan